更多>>精华博文推荐
更多>>人气最旺专家

连静女

领域:黑龙江电视台

介绍:青岛理工大学工学硕士学位论文2.66x10~,钢板已发生腐蚀,涂层防护性能变差。...

荣禄

领域:中国发展网

介绍:用户服务条款尊敬的用户:您好!欢迎光临文档投稿赚钱网站。利来娱乐,利来娱乐,利来娱乐,利来娱乐,利来娱乐,利来娱乐

利来国际老牌软件
本站新公告利来娱乐,利来娱乐,利来娱乐,利来娱乐,利来娱乐,利来娱乐
nbv | 2018-12-14 | 阅读(866) | 评论(45)
此外,69%的人认为“韩国不值得信赖”,62%的人回答“感觉不到亲近”。【阅读全文】
利来娱乐,利来娱乐,利来娱乐,利来娱乐,利来娱乐,利来娱乐
fri | 2018-12-14 | 阅读(795) | 评论(735)
PAGE第3课时 三角形中的几何计算课后篇巩固探究A组1.在△ABC中,AB=2,BC=5,△ABC的面积为4,则cos∠ABC等于(  )                ±C.-D.±解析由S=AB·BC·sin∠ABC,得4=×2×5sin∠ABC,解得sin∠ABC=,从而cos∠ABC=±.答案B2.某市在“旧城改造”工程中计划在如图所示的一块三角形空地上种植草皮以美化环境.已知这种草皮的价格为a元/m2,则购买这种草皮需要(  )元元解析由已知可求得草皮的面积为S=×20×30sin150°=150(m2),则购买草皮的费用为150a元答案C3.在△ABC中,a,b,c分别为角A,B,C的对边,若2b=a+c,B=30°,△ABC的面积为,则b等于(  )+++3解析由acsin30°=,得ac=6.由余弦定理,得b2=a2+c2-2accos30°=(a+c)2-2ac-3ac=4b2-12-63答案A4.在△ABC中,若AC=3BC,C=π6,S△ABC=3sin2A,则S△ABC=(解析因为AB2=BC2+3BC2-2×BC×3BC×32=BC2,所以A=C=π6,所以S△ABC=3sin2A=答案A5.若△ABC的周长等于20,面积是103,B=60°,则边AC的长是(  )解析在△ABC中,设A,B,C的对边分别为a,b,c,已知B=60°,由题意,得cos60°=a2+c答案C6.已知△ABC的三边分别为a,b,c,且面积S=a2+b2解析在△ABC中,S△ABC=a2而S△ABC=absinC,∴a2+b由余弦定理,得c2=a2+b2-2abcosC,∴cosC=sinC,∴C=45°.答案45°7.已知三角形的面积为,其外接圆面积为π,则这个三角形的三边之积等于     .解析设三角形的外接圆半径为R,则由πR2=π,得R=1.由S=absinC=abc4R=abc答案18.在△ABC中,角A,B,C所对的边分别为a,b,c,求证:ab-b证明由余弦定理的推论得cosB=a2cosA=b2右边=ca=2a2故原式得证.9.如图,在△ABC中,BC=5,AC=4,cos∠CAD=3132,且AD=BD,求△ABC的面积解设CD=x,则AD=BD=5-x.在△CAD中,由余弦定理,得cos∠CAD=42+(5∴CD=1,AD=BD=4.在△CAD中,由正弦定理,得ADsin则sinC=ADCD·1-∴S△ABC=AC·BC·sinC=×4×5×387=154710.导学号04994016若△ABC的三边长分别为a,b,c,面积为S,且S=c2-(a-b)2,a+b=2,求面积S的最大值.解S=c2-(a-b)2=c2-a2-b2+2ab=2ab-(a2+b2-c2).由余弦定理,得a2+b2-c2=2abcosC,∴c2-(a-b)2=2ab(1-cosC),即S=2ab(1-cosC).∵S=absinC,∴sinC=4(1-cosC).又sin2C+cos2C=1,∴17cos2C-32cosC+解得cosC=1517或cosC=1(舍去)∴sinC=817∴S=absinC=417a(2-a)=-417(a-1)2+∵a+b=2,∴0a2,∴当a=1,b=1时,Smax=417B组1.在钝角三角形ABC中,内角A,B,C所对的边分别为a,b,c,已知a=7,c=5,sinC=5314,则△ABC的面积等于(解析在钝角三角形ABC中,∵a=7,c=5,sinC=5314,∴AC,C为锐角,且cosC=1-sin2C=1114.由c2=a2+b2-2abcosC,得b2-11b+24=0,解得b=3或b=8.当b=8时,角B是钝角,cosB=a2+c2-b22ac=49+25-642答案C2.设△ABC的内角A,B,C所对的边分别为a,b,c,且3acosC=4csinA,若△ABC的面积S=10,b=4,则a的值为(  )解析由3acosC=4csinA,得asinA=4c3cosC.又由正弦定理asinA=csinC,得csinC=4c3cosC,∴tanC=,∴答案B3.在△ABC中,ab=60,S△ABC=153,△ABC的外接圆半径为3,则边c的长为    .解析∵S△AB【阅读全文】
8lz | 2018-12-14 | 阅读(201) | 评论(332)
鲸:海洋中的大型哺乳动物。【阅读全文】
r6p | 2018-12-14 | 阅读(801) | 评论(285)
 单调性学习目标重点难点1.结合实例,借助几何直观探索并体会函数的单调性与导数的关系.2.能够利用导数研究函数的单调性,并学会求不超过三次的多项式函数的单调区间.重点:利用导数求函数的单调区间和判断函数的单调性.难点:根据函数的单调性求参数的取值范围.导数与函数的单调性的关系(1)一般地,我们有下面的结论:对于函数y=f(x),如果在某区间上______,那么f(x)为该区间上的________;如果在某区间上______,那么f(x)为该区间上的______.(2)上述结论可以用下图直观表示.预习交流1做一做:在区间(a,b)内,f′(x)>0是f(x)在(a,b)上为单调增函数的__________条件.(填序号)①充分不必要 ②必要不充分 ③充要 ④既不充分又不必要预习交流2做一做:函数f(x)=1+x-sinx在(0,2π)上是__________函数.(填“增”或“减”)预习交流3做一做:函数f(x)=x3+ax-2在区间(1,+∞)上是增函数,则实数a的取值范围是______.在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引(1)f′(x)>0 增函数 f′(x)<0 减函数预习交流1:提示:当f′(x)>0时,f(x)在(a,b)上一定是增函数,当f(x)在(a,b)上单调递增时,不一定有f′(x)>0.如f(x)=x3在区间(-∞,+∞)上单调递增,f′(x)≥0.故填①.预习交流2:提示:∵x∈(0,2π),∴f′(x)=(1+x-sinx)′=1-cosx>0,∴f(x)在(0,2π)上为增函数.故填增.预习交流3:提示:f′(x)=3x2+a,∵f(x)在区间(1,+∞)上是增函数,∴f′(x)=3x2+a在(1,+∞)上恒大于或等于0,即3x2+a≥0,a≥-3x2恒成立,∴a≥-3.一、判断或证明函数的单调性证明函数f(x)=eq\f(sinx,x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减.思路分析:要证f(x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减,只需证明f′(x)<0在区间eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上恒成立即可.1.讨论下列函数的单调性:(1)y=ax5-1(a>0);(2)y=ax-a-x(a>0,且a≠1).2.证明函数f(x)=ex+e-x在[0,+∞)上是增函数.利用导数判断或证明函数的单调性时,一般是先确定函数定义域,再求导数,然后判断导数在给定区间上的符号,从而确定函数的单调性.如果解析式中含有参数,应进行分类讨论.二、求函数的单调区间求下列函数的单调区间:(1)y=eq\f(1,2)x2-lnx;(2)y=x3-2x2+x;(3)y=eq\f(1,2)x+sinx,x∈(0,π).思路分析:先求函数的定义域,再求f′(x),解不等式f′(x)>0或f′(x)<0,从而得出单调区间.1.函数f(x)=5x2-2x的单调增区间是__________.2.求函数f(x)=3x2-2lnx的单调区间.1.利用导数求函数f(x)的单调区间,实质上是转化为解不等式f′(x)>0或f′(x)<0,不等式的解集就是函数的单调区间.2.利用导数求单调区间时,要特别注意不能忽视函数的定义域,在解不等式f′(x)>0[或f′(x)<0]时,要在函数定义域的前提之下求解.3.如果函数的单调区间不止一个时,要用“和”、“及”等词连接,不能用并集“∪”连接.三、利用函数的单调性求参数的取值范围若函数f(x)=eq\f(1,3)x3-eq\f(1,2)ax2+(a-1)x+1,在区间(1,4)上为减函数,在区间(6,+∞)上为增函数,试求实数a的取值范围.思路分析:先求出f(x)的导数,由f′(x)在给定区间上的符号确定a的取值范围,要注意对a-1是否大于等于1进行分类讨论.1.若函数f(x)=x2-eq\f(a,x)在(1,+∞)上单调递增,则实数a的取值范围是__________.2.已知向量a=(x2,x+1),b=(1-x,t),若函数f(x)=a·b在(-1,1)上是增函数,求t的取值范围.1.已知函数的单调性求参数的范围,这是一种非常重要的题型.在某个区间上,f′(x)>0(或f′(x)<0),f(x)在这个区间上单调递增(递减);但由f(x)在这个区间上单调递增(递减)而仅仅得到f′(x)>0(或f′(x)<0)是不够的,即【阅读全文】
s7b | 2018-12-14 | 阅读(75) | 评论(225)
所以平时我比较注重对诉讼法的学习,工作中尽量做到认真、仔细,特别是对当事人的送达、期间等方面比较关注。【阅读全文】
cu7 | 2018-12-13 | 阅读(811) | 评论(309)
我们人类的发展的过程其实也就是学习别人先进技术,经验,理念的过程。【阅读全文】
lba | 2018-12-13 | 阅读(573) | 评论(267)
国家运用经济政策和计划,通过对经济利益的调整而影响和调节社会经济活动的措施经济手段内容经济计划经济政策国家统一制定的国民经济和社会发展计划,是国家从宏观上引导和调控经济运行的基本依据政府指导和影响经济活动所规定并付诸实施的一切准则和措施,它包括财政政策、货币政策、产业政策、税收政策等范围:调节市场上经济活动主体的一切经济活动执行的主体:立法机关和行政机关特点:战略性、宏观性、指导性和间接性含义国家宏观调控的手段经济手段国家通过制定和运用经济法律法规来调节经济活动的手段调节市场上经济活动主体的一切经济活动立法机关、司法机关和行政机关对经济主体具有普遍的约束力和严格的强制性,对经济运行的调节具有相对的稳定性和明确的规定性经济立法经济执法法律监督法律手段内容范围执行的主体特点含义国家宏观调控的手段法律手段国家通过行政机关,采取行政命令、指示、指标、规定等行政措施来调节和管理经济的手段控制在必要的范围和限度内行政机关行政命令行政指标行政规章制度和条例行政手段内容范围执行的主体特点含义具有直接、快速和强制性的特点,它的作用方向是自上而下的,呈垂直性国家宏观调控的手段行政手段正确区分宏观调控的几种手段。【阅读全文】
lct | 2018-12-13 | 阅读(759) | 评论(644)
PAGE第1课时 等比数列的前n项和课后篇巩固探究                 A组1.已知数列{an}的通项公式是an=2n,Sn是数列{an}的前n项和,则S10等于(  )解析∵an+1an=2n+12n=2,∴S10=2(1-210)答案D2.在等比数列{an}中,a2=9,a5=243,则{an}的前4项和为(  )解析因为a5a2=27=q3,所以q=3,a1=a2q=3,S4答案B3.已知等比数列{an}的前n项和为Sn,且a1+a3=,a2+a4=,则Snan=解析设公比为q,则q=a2于是a1+a1=,因此a1=2,于是Sn=21-12n1-12=41-12n,而答案D4.在14与之间插入n个数组成一个等比数列,若各项总和为778,则此数列的项数为(  解析设a1=14,an+2=,则Sn+2=14-解得q=-.所以an+2=14·-1解得n=3.故该数列共5项.答案B5.已知首项为1,公比为的等比数列{an}的前n项和为Sn,则(  )====3-2an解析在等比数列{an}中,Sn=a1-anq1-答案D6.对于等比数列{an},若a1=5,q=2,Sn=35,则an=     .解析由Sn=a1-anq1-q答案207.在等比数列{an}中,设前n项和为Sn,若a3=2S2+1,a4=2S3+1,则公比q=    .解析因为a3=2S2+1,a4=2S3+1,两式相减,得a4-a3=2a3,即a4=3a3,所以q=a4答案38.数列12,24,38,…,n2解析∵Sn=12+222+Sn=122+223由①-②,得Sn=12+122+123∴Sn=2-12答案2-19.已知等比数列{an}满足a3=12,a8=,记其前n项和为Sn.(1)求数列{an}的通项公式an;(2)若Sn=93,求n.解(1)设等比数列{an}的公比为q,则a3=所以an=a1qn-1=48·12(2)Sn=a1(1-由Sn=93,得961-12n=10.导学号04994046已知等差数列{an}的首项为a,公差为b,方程ax2-3x+2=0的解为1和b(b≠1).(1)求数列{an}的通项公式;(2)若数列{an}满足bn=an·2n,求数列{bn}的前n项和Tn.解(1)因为方程ax2-3x+2=0的两根为x1=1,x2=b,可得a-3+2=0,ab2-3b+2=0(2)由(1)得bn=(2n-1)·2n,所以Tn=b1+b2+…+bn=1×2+3×22+…+(2n-1)·2n,①2Tn=1×22+3×23+…+(2n-3)·2n+(2n-1)·2n+1,②由①-②,得-Tn=1×2+2×22+2×23+…+2·2n-(2n-1)·2n+1=2(2+22+23+…+2n)-(2n-1)·2n+1-2=2·2(1-2n)1-2-(2n-1)·2n+1-2=(3所以Tn=(2n-3)·2n+1+组1.等比数列{an}的前n项和为Sn,若S2n=3(a1+a3+…+a2n-1),a1a2a3=8,则Sn=++1解析显然q≠1,由已知,得a1(1-q整理,得q=2.因为a1a2a3=8,所以所以a2=2,从而a1=1.于是Sn=1-2n1-2答案A2.已知数列{an}是首项为1的等比数列,Sn是{an}的前n项和,且9S3=S6,则数列1an的前5项和为(或解析由题意易知公比q≠1.由9S3=S6,得9·a1(1-所以1an所以其前5项和为S5=1×答案C3.在等比数列{an}中,a1+a2+…+a5=27,1a1+1a2+…+1a5A.±±解析设公比为q,则由已知可得a两式相除,得a12q4=9,即a32=9,所以a答案C4.若等比数列{an}的前n项和为Sn,且S1,S3,S2成等差数列,则{an}的公比q=    .解析由题意,得a1+(a1+a1q)=2(a1+a1q+a1q2),又a1≠0,q≠0,故q=-.答案-+322+423+解析设Sn=1+322+423+…+n2n-1+n+12n,则Sn=22所以Sn=3-n+3答案3-n6.若等比数列{an}的【阅读全文】
利来娱乐,利来娱乐,利来娱乐,利来娱乐,利来娱乐,利来娱乐
csr | 2018-12-13 | 阅读(545) | 评论(13)
然而在日本国内,有人担心这成为中国的一张牌。【阅读全文】
dsm | 2018-12-12 | 阅读(472) | 评论(321)
图中A地、B地的地貌分别为、,从内外力作用的角度分别说明它们形成的主要过程。【阅读全文】
7ce | 2018-12-12 | 阅读(436) | 评论(202)
但是有一类的情感,是要忽然奔迸一泻无余的例如碰着意外的过度的刺激,大叫一声或大哭一场或大跳一阵,上邪!我欲与君相知,长命无绝衰。【阅读全文】
p5z | 2018-12-12 | 阅读(566) | 评论(272)
三、工作要求对检查发现的问题要统一记录格式,每月进行统一分析记录,找出主要问题和原因,制定措施,举一反三,狠抓落实。【阅读全文】
5ss | 2018-12-12 | 阅读(332) | 评论(720)
温故知新一、关于基因:肤色眼皮单双血型基因非基因区1、有遗传效应的DNA片段2、控制生物的性状3、在染色体上呈线性排列4.基因是控制生物性状的遗传物质的结构和功能的基本单位。【阅读全文】
o6w | 2018-12-11 | 阅读(777) | 评论(770)
汉代张骞出使西域时,引进芝麻、胡桃,为月饼的制作增添了辅料,这时便出现了以胡【阅读全文】
oaa | 2018-12-11 | 阅读(295) | 评论(557)
这次研修班的培训,我更意识到教育不应该是空中楼阁,它应该是立足于生活的。【阅读全文】
共5页

友情链接,当前时间:2018-12-14

利来网页 利来网上娱乐 利来国际备用 利来娱乐国际最给利老牌网站是什么 利来国际最给利的老牌
利来国际w66.com 利来国际 利来国际ag国际厅 利来国际AG 利来国际w66手机版
利来国际w66备用 利来国际娱乐平台 利来娱乐网 利来国际最老牌 利来w66
利来国际最给利的老牌 利来国际 利来国际老牌 利来国际备用 利来娱乐城
房产| 章丘市| 武汉市| 安庆市| 讷河市| 长垣县| 成安县| 岳阳县| 永宁县| 友谊县| 灵石县| 巴林左旗| 台东市| 彰武县| 清流县| 无为县| 邵东县| 郑州市| 徐汇区| 金塔县| 三门县| 泊头市| 黔西县| 林州市| 陆川县| 海林市| 舒城县| 乳山市| 蒲江县| 若羌县| 遂川县| 望城县| 江山市| 嫩江县| 安西县| 胶南市| 遂川县| 定边县| 平和县| 天全县| 当雄县| http:// http:// http:// http:// http:// http://